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We consider the statistical mechanics of interfering transmissions in a wireless communications protocol. In
this case, a connection between two nodes requires all other nodes within communication distance of the given
two nodes to remain quiet on the given channel. This leads to an interesting problem of dimers on a lattice,
with a restriction that no two dimers can overlap or be nearest neighbors. We consider both an equilibrium and
a nonequilibrium, “greedy” dynamics for the links; the equilibrium properties of the model are found to exhibit
an interesting spin-glass transition at maximum density on certain lattices, while the greedy construction is
related to the problem of random sequential adsorption.
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The study of networks has identified a variety of interest-
ing networks with different topological properties �1�, with
recent interest considering dynamical processes such as
flows on the networks. Wireless communication networks
provide a practically important example of information flow
on a network �2,3�. In this paper, we consider the problem of
the MAC �media access control� layer, which lies below the
routing layer and allows different nodes access to given fre-
quencies. This layer must enable a large number of nodes to
communicate over a finite number of frequencies with finite
signal range, while optimizing the latency, throughput, and
fairness of the protocol �4�. We show that even the simplest
model of the MAC layer gives rise to rich behavior, includ-
ing glassy and nonequilibrium dynamics.

Recently, the problem of the MAC layer in such a proto-
col has been cast as a matching problem �5�. Consider some
set of nodes, each with a given signal range. As a simple
approximation, the signal range leads to a directed network
of possible communication links between nodes: there is a
link from node i to node j if node j can receive a transmis-
sion from node i. As a further simplification, we consider the
case in which the network is undirected, so that whenever
node j can receive node i, node i can also receive node j.

Suppose there is only one allowed frequency. In this case,
suppose two nodes, i and j establish a communication link.
Then, all nodes that are within range of node i or node j must
remain silent, staying off the frequency in question, to avoid
interference. Thus, it is possible for a given subset of links to
be active simultaneously if and only if, for all nodes i, if
node i is in an active link then i has exactly one neighbor j
that is also active. Equivalently, this is the problem of finding
a set of dimers in which nodes in different dimers are at least
a distance of 2 from each other on the network; the presence
of a dimer indicates an active link between the two nodes.
The problem of multiple frequencies is similar, and leads to a
coloring problem �6�. In Fig. 1, we show an example net-
work and various possibilities of both allowed and disal-
lowed sets of communication links.

In this paper, we study the statistical mechanics of this

problem. We consider two different ways to generate the
links. In the first case, we consider summing over all pos-
sible allowed sets of dimers, weighting the covering by a
fugacity for the number of dimers. By taking the fugacity to
be large, we are thus able to find high-density configurations
of dimers on the network. The ultimate goal would be to
solve this problem on a random geometric graph �7�. In this
paper, we begin this program by solving this problem on a
Bethe lattice as a mean-field approximation to a graph with
the given coordination number. Several suprising results are
found even in this approximation. Interestingly, the results
depend on the coordination number of the Bethe lattice: for a
coordination number greater than 5, there appears to be a
spin-glass transition at a finite fugacity, while for a coordi-
nation number less than 5, this transition is fixed at infinite
fugacity. We also consider the problem on various finite di-
mensional lattices and speculate on the phase diagram. The
problem is related to a recently considered statistical me-
chanics of dimers in the limit of infinite repulsion between
neighboring dimers �8�, but we identify the possibility of the
spin-glass phase in this limit.

The second possibility we consider is a “greedy” dynam-
ics, in which active links are added one at a time to the
network, each link being added at random among the al-
lowed possibilities. This dynamics is a version of random
sequential adsorption �9�. We will see that the greedy dynam-
ics does very poorly on graphs with a high coordination
number.

To motivate the equilibrium and greedy dynamics, we
start with the following more general set of dynamics: at
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FIG. 1. �a� An example of an allowed configuration of dimers.
The solid lines denote the presence of a dimer �active link�, the
dashed lines denote a link on the network that has no dimer �an
inactive link�. �b� A disallowed configuration of dimers. The two
dimers are within a distance one of each other.
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every instant, we suppose that some set of dimers is present.
We then suppose that dimers can be created, when a link is
activated, and disappear, when two nodes that were commu-
nicating stop using the channel. Both processes happen with
given rates as follows: We suppose that at every instant of
time each link that is inactive has some rate of activating �if
that does not interfere with other links�, and we set this rate
to unity. We assign each dimer some rate of disappearing in
any instant of time, and we set this rate to 1/�. Then, in the
stationary distribution of this dynamics, the probability of
finding any given allowed configuration of dimers is Z−1�ND,
where ND is the number of dimers in the given configuration
and

Z = �
c

�ND�c�, �1�

where c is a configuration of dimers and ND�c� is the number
of dimers in the configuration.

Then, the larger � is, the larger the average number of
active links will be, which may be desired. However, a very
large � means that the configuration of active links changes
slowly in time; the system will tend to remain stuck in a
given configuration for a long time, which is also undesir-
able. We consider two cases below. First, the stationary dis-
tribution at finite �. Next, we consider �=�, and start from
an initial configuration with no links active; in this case,
links can be activated but are never deactivated. This leads to
a random sequential adsorption problem, and we will see that
the final density of links in this case is far below the maxi-
mum possible in finite �.

Equilibrium Distribution on the Bethe Lattice. We start
with the equilibrium case, solving for the partition function
�1�. This problem is equivalent to that studied in �8� in the
limit �→−� �in that paper’s notation�. However, we con-
sider the possibility of different spin-glass and ordering tran-
sitions in this paper.

We consider a Bethe lattice with fixed branching ratio, k,
so that every node has q=k+1 neighbors. There are a num-
ber of different possible boundary conditions considered in
the literature �10�. One possibility is to assume that the lat-
tice indeed is a tree with a given branching ratio and with
some number of leaves; in this case, appropriate boundary
conditions must be assigned at the leaves of the tree and all
the results given in this paper only apply to spins that are
remote from the boundary. This procedure is reasonable in
unfrustrated systems, and in general for systems outside of a
spin-glass phase. However, frustrated systems in the spin-
glass phase are sensitive to the boundary conditions that fix
the degree of frustration �11�. Then, a better choice is a ran-
dom graph with fixed connectivity k+1.

We will solve the problem with a set of recurrence equa-
tions on the Bethe lattice, and identify the onset of a spin-
glass phase. In the spin-glass phase, which we do not treat,
the system becomes sensitive to boundary conditions. Out-
side the spin-glass phase, the simple solution with recurrence
equations is adequate to describe both the case of a tree with
random boundary conditions, considering nodes remote from
the boundary, and the case of a random graph.

To obtain the recurrence equations, we consider a tree

with one of three possible states for the root of the tree �the
root has only k neighbors�. First, the root can be connected to
one of its daughters via a dimer �we call this active�. Second,
the root can be not connected to any of its daughters, but
have at least one of its daughters involved in an active link
�we refer to this as locked�. Third, the root can be not con-
nected to any of its daughters, and have none of its daughters
active either �we refer to this as free�. These three possibili-
ties are shown in Figs. 2�a�–2�c�.

Let the partition function of the dimer problem on a tree
in each of the three cases be Z1 ,Z2 ,Z3, respectively. Then
take k of these trees and join them together to make a tree of
one higher level, and compute the resulting partition func-

tions Z̃1 , Z̃2 , Z̃3 for the larger tree with the three different
boundary conditions for that tree.

We have that Z̃1=�kZ3�Z2+Z3�k−1, as one of the k daugh-
ters must be free to have a dimer with the new root, and all
the other daughters must be locked or free �they cannot be
active or the root could not add a dimer to the free daughter�.
Then, Z̃3= �Z2+Z3�k, as each of the k daughters of the new
root must be either locked or free, but cannot be active, so

each subtree has partition function Z2+Z3. Finally, Z̃2= �Z1

+Z2+Z3�k− �Z2+Z3�k, as in this case at least one daughter
must be active; we consider all possible states of the daugh-
ters, �Z1+Z2+Z3�k, and subtract off those states with no

daughters active, Z̃2= �Z2+Z3�k.
It is convenient to rescale the partition functions Zi by a

constant in looking for a fixed point. We scale Z̃i→ Z̃i / Z̃3, so

Z̃3=1. The rescaled equations become

Z̃3 = 1; Z̃1 = �k/�Z2 + 1�;

Z̃2 = �Z1 + Z2 + 1�k/�Z2 + 1�k − 1. �2�

We have numerically solved Eqs. �2� and found that for
small � the solution converges to a fixed point, which we
refer to as a liquid phase as we find below that it has no
long-range correlations. For larger �, there is a range for
which the fixed point is stable, but there is also a stable set of
solutions that oscillates with period three. The oscillating

FIG. 2. �a� Active configuration: root connected to a daughter by
an active link. �b� Locked configuration: a daughter involved in an
active link, preventing the root from forming a link to any other
node. �c� Free configuration: none of the daughters have active
links. �d� Joining k+1 trees as described in text.
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solution is referred to as a solid phase, as it has broken trans-
lational symmetry: at a given level of the tree most of the
nodes are free, at the next higher level most of the nodes are
active to a daughter, and at the next higher level most of the
nodes are locked.

At even higher values of �, the stationary solution be-
comes unstable to oscillations and only the solid solution
remains. The existence of the solid solutions depends on the
boundary conditions on the tree. If the lattice is a balanced
tree with a given branching ratio and depth, then the system
has only two phases, solid and liquid, with a phase transition
between them �the possibility of a liquid-gas transition as in
�8� does not happen in this system� as identified from the
recurrence equations above. However, on a random graph,
the presence of loops will frustrate the solid phase. The solid
phase is also frustrated on a tree in which the boundary con-
ditions on the leaves are chosen sufficiently randomly �for
example, the tree is not balanced, so that different leaves are
at different depths below the root�. While these frustrating
boundary conditions can destroy the solid phase, they raise
the possibility of a spin-glass phase, considered below.

At large �, we can solve Eq. �2� in the liquid phase giving

Z1
liquid = k�k+1�/�2k+1���k+1�/�2k+1�,

Z2
liquid = kk/�2k+1��k/�2k+1�,Z3

liquid = 1.

To find the probability that a given site has a dimer leaving
it, we must then connect q=k+1 of these trees into one tree,
as in Fig. 2�d�, rather than k trees as above. After carrying
this out, one finds that for large � a site has probability �k
+1� / �2k+1�−O��−1/�2k+1�� of having an active link emanat-
ing from it. Defining N to be the total number of sites and
�=2ND /N, we get a limiting density of active sites at large �
of �= �k+1� / �2k+1�=q / �2q−1�.

The limiting density in the liquid phase can be understood
on physical grounds. For any lattice with fixed coordination
number k+1 and for which the number of sites that neighbor
a dimer is fixed to be n �if there are no loops of length 3,
n=2k�, the density of active sites is at most �k+1� / �k+1
+n /2�. To see this, note that the total number of sites that
neighbor dimers is at least NDn / �k+1�: each of the ND

dimers has n neighbors, but since each of those neighboring
sites has k+1 neighbors, we may have overcounted the num-
ber of sites that neighbor dimers by a factor k+1. Then, the
total number of sites that have active links, plus the total
number of sites that neighbor a site with an active link is at
least ND�2+n / �k+1���N. Thus, �=2ND /N�2/ �2+n / �k
+1��= �k+1� / �k+1+n /2�. For a lattice with no loops of
length three, this reduces to �� �k+1� / �2k+1�; to achieve
the maximum density, it is necessary that if a node does not
have an active link then all k+1 of its neighbors have active
links as in Fig. 3�a�. The limiting density in the liquid phase
saturates this bound, but we now consider the possibility of a
spin-glass transition in the system that may prevent it from
reaching the maximum density.

To identify the spin-glass transition, we follow the proce-
dure used for the Ising spin glass �12,10�. Let each of the k
trees that we join together in the procedure above have slight
random variations in the values of Z1 ,Z2 ,Z3 about the liquid

solution above, resulting from randomness in the boundary
conditions. If the liquid solution is stable against these ran-
dom fluctuations, then the Bethe lattice and random graph
will behave identically in the thermodynamic limit. Other-
wise, we go to a spin-glass phase, and the complete graph
may have different behavior. Fixing Z3=1 as above, we have
two physical quantities, Z1 and Z2 for each subtree. Suppose
first that on each subtree each of these two values has the
same slight fluctuation about the liquid solution above. We

can compute the change in Z̃1 and Z̃2 to linear order from Eq.
�2�. The resulting linear transformation is found to have ei-
genvalues �±=−�k±�k2−4k� /2 at �=�. Let these eigenval-
ues have left eigenvectors v±. Following �12�, we consider
the mean-square fluctuations

M± � ��i
vi

±�Zi − Zi
liquid��2

. Here, the overline denotes averaging over the random fluc-
tuations, while the sum over i=1,2 projects �Zi−Zi

liquid� onto
the corresponding right eigenvector. If on each subtree the
fluctuations about the mean are random, then the mean-

square fluctuation at the next higher level is given by M̃±

= ���2 /kM±, where the reduction by k is caused by averaging
k random numbers together. When ���2=k, we have a spin-
glass transition. Now, for k�4, the two eigenvalues are com-
plex conjugates with absolute value �k at �=�, so that the
spin-glass transition occurs precisely at �=�, with no tran-
sition at ���.

For k�4, we have a spin-glass transition at finite �, with
both eigenvalues real and only one of them greater than �k in
absolute value. Since there is only one such such eigenvalue,
this transition might be in the same universality class as the
Ising spin glass on the random graph. One caveat is that we
have identified an instability of the liquid phase, but have not
yet shown the existence of solutions with a distribution of
local partition functions Zi; also, any possible first-order tran-
sition to a spin-glass phase would be missed by this analysis.

Equilibrium in Finite Dimensions. The treatment above is
on the Bethe lattice. The properties of the system on finite
dimensional systems are also of interest. On a square lattice,
the system has a number of possible ordered structures. The
pattern of Fig. 3�b� is the highest possible density, with a
density of �=4/9, not far below the bound of 4/7 found
above for a graph with a coordination number of 4. Thus, we

FIG. 3. �a� Configuration to obtain highest density on Bethe
lattice. �b� Highest possible density configuration on the square
lattice.
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conjecture that as a function of � the system has a phase
transition from a liquid state at low � to the ordered state of
Fig. 3�b� at large �, with possible additional transitions to
other ordered phases. A very interesting question is whether
the system may have a glassy phase at some intermediate �.

Greedy Dynamics. The second problem we consider is the
random sequential adsorption case at �=�. Our technique
follows that of �13� in a slightly different case of no interac-
tion between dimers. We start at time t=0 with no active
links on the lattice. We then activate allowed links at a unit
rate per link. We consider the probability Em�t� that after
time t a connected cluster of m sites has: �1� no dimers on
any of the m sites and �2� none of the neighbors of the given
m sites has a dimer. These conditions imply that the m sites
are free to participate in dimers as they are not blocked by
any of their neighbors. It is interesting that the probability
can be written as Em�t�, independent of the structure of the
connected cluster �there are many possible clusters with m
sites�. At t=0, we have Em�t�=1 for all m. At later times, one
can derive the following differential equation for m�0:

�tEm = − �m − 1�Em − ��k − 1�m + 2�Em+1 − ��k − 1�m

+ 2�kEm+2. �3�

There, the first term corresponds to the possibility of adding
a dimer to any of the �m−1� bonds that connect two sites,
both in the cluster. The second term corresponds to the pos-
sibility of connecting a dimer to any of the ��k−1�m+2�
bonds that connect a site in the cluster to a site outside the
cluster, while the last term corresponds to the possibility that
a site that neighbors the cluster will add a dimer to one of the
k sites outside the cluster that neighbor the given site.

The ansatz Em�t�=c�t�	�t�m−1 solves Eq. �3� with �t	=
−	− �k−1�	2− �k−1�k	3 and �tc=−�k+1�	c− �k+1�k	2c,
and initial conditions c�0�=	�0�=1.

We define ��t�=2ND�t� /N to be the fraction of sites with a
dimer emanating from them. We find �t�= �k+1�E2.

Numerical solution of the differential equation gives
��t→��	0.313 for k=4. This is noticeably worse than the
limiting value of �=5/9 computed in the equilibrium case
above. At larger k, the nonequilibrium dynamics does even
worse. The differential equations can be solved asymptoti-
cally at large k, where for c ,	
1/k the equations simplify
to �t	=−k2	3 ,�tc=−k2	2c. The result for large k is ��t
→��
 ln�k� /k.

Discussion. We have studied a simple model inspired by
recent developments in wireless communication. This model
turns out to be a model of interacting dimers very similar to
other models studied in statistical physics. From the point of
view of statistical physics, one of the most interesting fea-
tures of the model is the spin-glass transition at �=� for k
�4. In the language of statistical physics, this implies that
the transition happens at zero temperature in the mean-field
limit. This may simplify the treatment of this transition and
may be useful for studying finite dimensional spin glasses.

The spin-glass transition is of interest for practical pur-
poses also. In the liquid phase, heuristic algorithms will
likely do a good job of rapidly finding allowed dimer con-
figurations of a given density, but in the glass phase it will be
much more difficult to find good configurations and the sys-
tem may get stuck in certain configurations.
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